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Abstract

Cancer initiation is driven by the cooperation between genetic and epige-
netic aberrations that disrupt gene regulatory programs critical to maintain-
ing specialized cellular functions. After initiation, cells acquire additional ge-
netic and epigenetic alterations influenced by tumor-intrinsic and -extrinsic
mechanisms, which increase intratumoral heterogeneity, reshape the cell’s
underlying gene regulatory networks and promote cancer evolution. Fur-
thermore, environmental or therapeutic insults drive the selection of hetero-
geneous cell states, with implications for cancer initiation, maintenance, and
drug resistance. The advancement of single-cell genomics has begun to un-
cover the full repertoire of chromatin and gene expression states (cell states)
that exist within individual tumors. These single-cell analyses suggest that
cells diversify in their regulatory states upon transformation by co-opting
damage-induced and nonlineage regulatory programs that can lead to epige-
nomic plasticity. Here, we review these recent studies related to regulatory
state changes in cancer progression and highlight the growing single-cell
epigenomics toolkit poised to address unresolved questions in the field.
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1. INTRODUCTION

Diverse regulatory mechanisms establish cell-type-specific and context-specific chromatin states
that facilitate the activation of functional gene expression programs. Gene regulatory programs,
comprising a combined repertoire of transcription factors (TFs) and chromatin-modifying pro-
teins, shape this chromatin landscape and maintain cellular identity (Lambert et al. 2018, Long
et al. 2016). In diseases such as cancer, these gene regulatory programs become altered, lead-
ing to the aberrant gene expression that promotes cancer initiation, progression, and metastasis
(Massagué&Ganesh 2021,Valencia&Kadoch 2019).Disruption of regulatory programs is driven
by oncogenic mutations in a presumed cell of origin, resulting in a cascade of cellular phenotypic
changes leading to altered cell function (Blanpain 2013, Ferone et al. 2020) (Figure 1). In recent
years, the rapid development of single-cell genomic technologies has begun to uncover the di-
versity of cell states that emerge during tumor initiation, tumor maintenance, and drug resistance
in cancer (Castro et al. 2021). Studies suggest that these cellular phenotypes are mediated by in-
creased cellular plasticity, which results in gradually evolving and asynchronous changes to the
chromatin landscape reminiscent of gene regulation during development and leads to increased
intratumoral heterogeneity (Gola & Fuchs 2021). However, this apparent intratumoral hetero-
geneity has impaired our capacity to use bulk assays to profile the diverse gene regulatory processes
that drive acquired phenotypes of cancer cells during tumor progression.

Single-cell epigenomics has expanded our capabilities to profile these heterogeneous cell states
in cancer (Buenrostro et al. 2015,Cusanovich et al. 2015,Kaya-Okur et al. 2019,Kelsey et al. 2017,
Rotem et al. 2015, Shema et al. 2019). In this review, we aim to summarize the recent advances
in these technologies, including (a) efforts to integrate diverse single-cell measurements (multi-
modal analyses) highlighting chromatin accessibility profiling, (b) computational strategies to dis-
entangle the complexities of gene regulation, and (c) lineage-tracing approaches to delineate the
unique paths cancer cells navigate from initiation tometastasis.We place emphasis on scATAC-seq
[single-cell ATAC-seq (sequencing assay for transposase-accessible chromatin)] approaches,which
use hyperactive Tn5 transposition to measure chromatin accessibility (Buenrostro et al. 2013,
2015), as these methods have become commercialized and are now widely available for cancer
research, facilitating studies that seek to map heterogeneous epigenomic cells states in cancer and

Cell of origin
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Figure 1

Cascade of cell state transitions during cancer progression. These steps may include initiation in a cell of origin in a permissive
environmental context, progression toward increased intratumoral heterogeneity and dissociation from lineage identity, and ultimately
metastatic seeding or cell state selection (such as in response to therapy or inflammation). Abbreviation: TF, transcription factor.
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normal cells that comprise the tumor microenvironment. In addition, we move beyond these ap-
proaches to discuss single-cell technologies to characterize histone modifications,TF localization,
and DNA methylation, as well as strategies that provide spatial context for chromatin-mediated
regulatory programs. We describe our growing understanding of cancer evolution through the
lens of single-cell epigenomics and propose how developing technologies might contribute to a
greater understanding of the regulatory mechanisms driving cancer.

2. SINGLE-CELL EPIGENOMICS PROVIDES AN OPPORTUNITY
TO BETTER DEFINE THE CELL OF ORIGIN

Cancer commonly initiates with the acquisition of a genetic mutation in a specific cell of origin.
The cell of origin is defined as a cell type that can tolerate oncogenic mutations and transform
to initiate cancer progression (Haigis et al. 2019, Visvader 2011). The induction of oncogenic
mutations in distinct cell types, such as in genetically engineered mouse models (GEMMs) or
correlative analyses of cell identity in human tumors (Ferone et al. 2020, Hoadley et al. 2018),
has been used to define the cell of origin for various cancer types. Classically, our definition of
cell types, including the cell of origin, has largely been based on the expression of a small subset
of uniquely expressed marker genes. In contrast, single-cell genomic studies are uncovering a
diverse collection of cell states based on broader regulatory features that exist within otherwise
well-defined cell types. Variations in a cell’s state reflect diverse cellular programs, such as the cell
cycle and inflammatory signaling, as well as the stochastic fluctuations of gene regulation within a
cell (Shema et al. 2019) (Figure 2a). Importantly, cell states can be distinguished using single-cell
epigenomic and transcriptomic approaches and can be defined by the distinct activity of TFs.Here
we describe the importance of these higher-resolution cell-of-origin studies and their relevance
to epigenetic poising and memory.

Nucleus

Disrupted gene
regulation

Proliferation Signaling

DifferentiationInflammation/
stress

Spatiotemporal
cues Senescence

Metastasis

Noncancerous
cell of origin

Genetics Epigenetics

Secondary
genetic mutation

Founding
genetic mutation

Epigenetic
alterations

Permissive
cell type/state

a
b

TF

Figure 2

Genetic and epigenetic alterations cooperate to transform and initiate cancer. (a) Disrupted gene regulation
is mediated by altered activity of transcription factors (TFs) [yellow oval, shown in the nucleus (green)], which
can be caused by or lead to phenotypes that promote cancer progression (blue). (b) Oncogenic transformation
of a cell requires an appropriate cell state that is suitable for cancer initiation via genetic and epigenetic
aberrations. This process is depicted here as a noncancerous cell of origin climbing a ladder of genetic and
epigenetic changes toward a rare metastatic cell state.
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We propose that our definitions of the cell of origin should include the oncogenic potential
of cell states. Demonstrating the importance of a revised model, researchers have linked the ap-
pearance of sustained wound healing–like programs such as inflammation to persistent cellular
states required for oncogenic transformation (MacCarthy-Morrogh & Martin 2020). For exam-
ple, KRAS genetic mutations alone cannot promote permanent transformation of pancreatic cells
(Guerra et al. 2007).Rather,KRAS-induced transformationmust occur following injury, as defined
by altered chromatin and gene expression programs following pancreatic inflammation, causing
cells to freeze in an oncogenic cell state (Alonso-Curbelo et al. 2021, Li et al. 2021). Researchers
utilized scATAC-seq to find key inflammation-induced epigenetic drivers and identified a role
for AP-1/FOS TFs (Bejjani et al. 2019), which have been broadly implicated in cancer, and the
chromatin reader BRD4 in activating this cell state (Alonso-Curbelo et al. 2021). Further use
of single-cell sequencing tools and mouse models is likely to uncover additional epigenetically
defined permissive cell states across cancer types, emphasizing the need for an improved under-
standing of the regulatory mechanisms driving cells into distinct cellular states.

The above example demonstrates how epigenetic mechanisms can poise cells for transforma-
tion. In contrast, we also expect genetic mutations may alter epigenomic regulation and position
cells to enter permissive cell states. For example, genetic mutations in nonmalignant cells can
promote clonality prior to cancer initiation, as demonstrated by clonal hematopoiesis (Bowman
et al. 2018). Here, hallmark genetic mutations occur in chromatin-modifying genes that regulate
DNA methylation (DNMT3A and TET2), polycomb silencing (ASXL1), and genome structure
(genes encoding the cohesin protein complex) ( Jaiswal et al. 2014). While mechanisms remain
to be fully elucidated, many of these mutations have been implicated in increased inflammatory
signaling ( Jaiswal & Ebert 2019). Together, this suggests that genetic and epigenetic alterations,
which lead to changes in cell state, cooperate over time to initiate cancer (Figure 2b).

Finally, we might expect that cancer cells maintain epigenetic memory reflecting their cell of
origin. For example, cell-of-origin studies using bulk ATAC-seq in leukemia have shown that can-
cer cells maintain epigenomic signatures of their cell of origin (George et al. 2016). By extension
of this principle, DNA methylation patterns best identify tumors within the same tissue of ori-
gin (Hoadley et al. 2018) and can be used to exquisitely classify subtypes of tumors (Capper et al.
2018). These data suggest that cancer cells preserve epigenetic memory of the cell of origin at the
level of DNA methylation. Therefore, studies of epigenetic memory may improve disease prog-
nosis, serve as a valuable correlative tool to identify the cell of origin in primary human tumors,
and motivate the development of preventative therapies.

Advances in single-cell epigenomic technologies will broadly refine our understanding of
cellular states (Sinha et al. 2021) (Table 1); this includes droplet-based scATAC-seq approaches
(Lareau et al. 2019, Satpathy et al. 2019). Furthermore, microfluidics-free combinatorial indexing
approaches (Cusanovich et al. 2015, Ma et al. 2020), which enable sample multiplexing by
barcoding during transposition, expand the number of samples or tumors that can be analyzed
in one experiment (LaFave et al. 2020). Together, this diverse family of scATAC-seq methods has
facilitated the discovery of heterogeneous chromatin features in normal cells and of the expansive
complexity of the epigenome in tumors and the surrounding tumor microenvironment (Alonso-
Curbelo et al. 2021, LaFave et al. 2020, Satpathy et al. 2019). These methods continue to evolve,
and now incorporate newmeasurement modalities, such as RNA, protein epitopes, and adaptation
to pooled CRISPR screening to study gene regulatory networks (GRNs) (Sinha et al. 2021).

Multimodal analyses that integrate single-cell epigenomic and transcriptomic analyses will en-
able the construction of GRNs with deeper insights into regulatory programs and dynamics across
cancer progression (Kamimoto et al. 2020). As one specific example highlighting the utility of
this approach, multiomic analyses enable the study of epigenetic latency or chromatin potential,
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Table 1 Principle areas of technological development in epigenomics

Approach Description
Chromatin and RNA
multiomics

Chromatin accessibility (ATAC-seq) and gene expression (RNA-seq) can be profiled within the
same single cell at high throughput. Methods are either droplet based (Chen et al. 2019) or
plate based and mediated by combinatorial barcoding (Ma et al. 2020).

Lineage tracing Single-cell genomics enables new opportunities for tracing cell lineages (Woodworth et al.
2017). These methods can be divided into three categories: methods that leverage natural
genetic variation (Ludwig et al. 2019), DNA methylation methods (Gaiti et al. 2019), and
engineered barcoding strategies (Bowling et al. 2020,Weinreb et al. 2020).

Single-cell ChIP-seq Technological advances have enabled low-input or single-cell analyses of DNA-bound proteins
(Grosselin et al. 2019). New methods utilize antibodies tethered to the protein micrococcal
nuclease (Skene & Henikoff 2017) or Tn5 (Kaya-Okur et al. 2019).

Spatial analyses Genomic methods to spatially visualize epigenomic features within cells are emerging. These
methods can be categorized by their resolution, either subcellular (Chen et al. 2015, Payne et al.
2021,Wang et al. 2018) or cellular (Rodriques et al. 2019, Stickels et al. 2021, Zhao et al. 2021).

Data integration Computational methods have advanced our capacity to integrate single-cell genomic data types.
This includes the integration of epigenomic, transcriptomic, protein expression, and spatial
data (Granja et al. 2021, Satija et al. 2015).

Deep learning Deep learning methods are rapidly improving the quality and efficiency of computational tools
for epigenomics. These methods have broad applicability, enabling data integration (Lopez
et al. 2018), data denoising (Lal et al. 2021), and the prediction of epigenomic features based
on DNA sequence (Avsec et al. 2021).

Abbreviations: ATAC-seq, sequencing assay for transposase-accessible chromatin; ChIP-seq, chromatin immunoprecipitation and sequencing; RNA-seq,
RNA sequencing.

which is defined as chromatin changes that happen prior to gene expression activation (Ma et al.
2020). These observations build from the well-established stepwise mechanism of gene activa-
tion, whereby enhancers transition between silenced, poised, and active states as cell type–specific
TFs recruit specific histone readers and writers (Rada-Iglesias et al. 2011). While current single-
cell studies use chromatin accessibility to identify poised enhancer states, histone modifications
reflecting primed (H3K4me1) and active (H3K27ac) enhancers have been demonstrated to be
powerful markers of poised regulatory elements. Excitingly, single-cell cleavage under targets and
tagmentation (scCUT&Tag) approaches may now enable the study of histone modifications in
single cells (Bartosovic et al. 2021, Wu et al. 2021). While these methods have largely been used
to understand cell fates in development and normal differentiation, they also hold tremendous
promise for providing a clearer understanding of epigenetic poising that contributes to permis-
sive cellular states for oncogenic transformation.

3. LINEAGE INFIDELITY IS A COMMON FEATURE OF CANCER
PROGRESSION

Single-cell analysis enables the study of lineage identity by comparing gene regulatory programs
in normal cells to those dysregulated in cancer. In addition to TFs, chromatin-modifying en-
zymes modulate the activity of regulatory elements, such as promoters, enhancers, and insulators
to fine-tune chromatin structure and gene expression. Under normal tissue homeostatic condi-
tions, cell type–specific regulators must activate the appropriate programs, and the mechanisms
by which cells access non-lineage-specifying programs in cancer are not well understood. Loss
of tissue homeostatic gene regulation in stem cells of the skin leads to lineage infidelity during
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cancer progression (Ge et al. 2017). In this context, lineage infidelity occurs by the activation of
stress-associated programs that lead cells to decouple from their identity and transdifferentiate
into aberrant lineages. As a result, some researchers have described cancer as a “wound incapable
of healing” (MacCarthy-Morrogh &Martin 2020). In this section we explore the epigenomic de-
terminants of cell identity, their dysregulation in cancer, and the use of single-cell tools to define
these altered regulatory programs.

The ability of cancer cells to occupy altered differentiation states has been well described
across various cancers. As one example, single-cell studies of human lung adenocarcinoma
have shown substantial differences in alveolar identity within tumors (Laughney et al. 2020).
Extending this observation, researchers have demonstrated using single-cell analyses of lung
adenocarcinoma tumors in mouse models that cells become detached from the identity of the
transformed cell type [alveolar type 2 (AT2) cells], acquire developmental programs (endoderm)
(Tata et al. 2018), and adopt altered fates (AT1-like and gastric-like cell states) (LaFave et al. 2020,
Marjanovic et al. 2020). Interestingly, these transitions of cell identity contribute to intratumoral
heterogeneity and appear continuous, without clear subpopulations within the tumor (LaFave
et al. 2020). Coincidentally, within normal cells, injury-associated programs have been described
to induce AT2-to-AT1 differentiation, implicating damage (wounding) in loss of lineage identity
(Nabhan et al. 2018). Similar mechanisms of trans- or dedifferentiation have been described
across many tumor types, including pancreatic adenocarcinomas, small-cell lung cancers, breast
tumors, and basal cell carcinomas (Biehs et al. 2018, Ge et al. 2017, Ireland et al. 2020, Storz
2017, Van Keymeulen et al. 2015). Beyond the lung, these data support the hypothesis that loss of
lineage restriction, paired with stress responses, are important mechanisms by which cells acquire
epigenetic plasticity in cancer, potentially allowing cells to enter states similar to those important
in the developmental history of the cell.

Single-cell epigenomic methods can provide insights into the regulatory factors that govern
these trans- and dedifferentiation fate transitions, such as paired single-cell epigenomic and tran-
scriptomic measurements to define regulatory dynamics of TFs. Computational approaches uti-
lizing multiomic single-cell methods [scATAC-seq and scRNA-seq (single-cell RNA sequencing)]
can connect distal enhancers to genes by utilizing the correlation of chromatin accessibility with
gene expression across single cells (Buenrostro et al. 2018,Granja et al. 2021,Ma et al. 2020).With
this approach, single-cell methods can identify domains of regulatory chromatin (DORCs) (Ma
et al. 2020) that describe chromatin regions with a high density of enhancer-gene interactions (10–
50 distal enhancers). DORCs commonly regulate lineage-determining genes—which are likely a
result of cells requiring exquisite control of transcription at these genes—and are highly concor-
dant with regulatory regions known as superenhancers (defined by the association of H3K27ac,
MED1, and BRD4) (Hnisz et al. 2013). The emergence of single-cell tools measuring chromatin
accessibility or histone modifications promises to uncover aberrant TFs that promote the activa-
tion of lineage-altering regulatory elements, thereby revealing mechanisms that govern lineage
infidelity in cancer.

Several studies have demonstrated that single-cell tools may be used to characterize cell fate
dynamics within cancer cells by pseudo-temporal ordering (pseudo-time) of single-cell profiles
(Marjanovic et al. 2020, Young et al. 2018). As an example, single-cell tools have identified TF-
mediated trajectories inWilms’ tumor progression (Young et al. 2018). Single-cell methodsmay be
used to track diverse cell fates as cells progress tometastasis; however, the true trajectories bywhich
cells move between cell states are complex and may not be well suited for pseudo-time models.
True trajectories may include (a) dead ends that are not compatible with metastatic progression
(i.e., senescent or dormant cell populations), (b) reversible paths that are consistent with trans-
and dedifferentiation, and (c) mixtures of these dynamics (Figure 3). As such, this conceptual
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Cell of origin

Metastasis

Dead end

Linear

Nonlinear

Figure 3

Potential routes of cancer progression. Stylized uniform manifold approximation and projection (UMAP)
from continuous epigenomic cell states isolated from murine lung adenocarcinoma cells. Several potential
trajectories toward metastasis include linear paths, nonlinear (reversible) paths, and dead ends.
Figure adapted from LaFave et al. (2020).

understanding of pseudo-time and its associated computational tools may not generalize to all the
complex lineage trajectories expected in cancer.

Lineage-tracing methods (Table 1) will enable the dissection of more complex cell fate trajec-
tories (Woodworth et al. 2017). Diverse strategies leveraging engineered barcodes, including in
GEMMs, can be utilized to enable tracking of cell states in cancer, including DNA barcodes,
transposon-based methods, or CRISPR-mediated evolutionary barcodes (Bowling et al. 2020,
Wagner &Klein 2020). In metastasis, lineage tracing in cancer xenografts has shown that there are
several routes to metastatic progression and has uncovered important regulators at specific nodes
of progression, such as the suppressive role of KRT17 (Quinn et al. 2021). Overall, lineage-tracing
strategies will be helpful to further understand cancer progression, including the complex tra-
jectories exemplified by partial epithelial-to-mesenchymal transition (EMT) (Puram et al. 2017,
Simeonov et al. 2021).

In human tumors, single-cell tools may utilize naturally occurring genetic and epigenetic bar-
codes. Beyond copy number variants and single-nucleotide variants (Navin et al. 2011), tantalizing
proof-of-principle experiments have used DNAmethylation (Gaiti et al. 2019) and mitochondrial
variants (Ludwig et al. 2019) to provide new means by which to trace cell lineages in the absence
of engineered barcode sequences. We anticipate that applications of these tools, in concert with
single-cell epigenomic or multiomic approaches, will help identify the regulatory determinants
of increased lineage plasticity leading to altered cell fates. Together, the incorporation of lineage-
tracing strategies, in combination with single-cell epigenomics, will be essential for understanding
the exact trajectories of tumor cells in otherwise unstructured epigenomic data.

4. EFFECTS OF CODING AND NONCODING MUTATIONS ARE
CANCER CELL STATE SPECIFIC

Large-scale genome sequencing efforts, such as The Cancer Genome Atlas (TCGA), have pro-
vided comprehensivemaps of the genomic alterations within coding regions of the human genome
(Weinstein et al. 2013). These driver mutational patterns are relatively distinct for different can-
cer types and cells of origin, motivating the study of how genetic mutations cooperate with the
epigenome to promote cancer initiation and progression. However, most studies are predom-
inantly restricted to mapping mutations in protein-coding genes, and as a result, the role of
noncoding mutations and how they disrupt regulatory elements across the genome are not well
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understood. Given the utility of genome-wide association studies (GWAS) in elucidating disease-
associated predisposition genes, regulatory maps linking somatic variation across cancer subtypes
with downstream gene targets are critical to understanding context-specific gene regulation in
cancer. In this section we describe efforts to extend the study of noncoding variation across can-
cers and recent endeavors to map regulatory elements in normal and cancer cells.

The regulatory architectures that govern GRNs are highly context specific, as evidenced by
the fact that a distinct subset of enhancers regulate the same gene in different cell types (Corces
et al. 2016), and these architectures provide enough detail to serve as markers of prognosis in
patient samples (Cejas et al. 2019). Without a greater understanding of GRNs in normal cells
and cancer, the implications of noncoding variation remain relatively unclear. Mutations in non-
coding regulatory elements have been studied previously in cancer, including the identification
of TERT promoter mutations (Huang et al. 2013) and enhancer hijacking through fusions, as
with the activation of MYC via its fusion with predicted superenhancer regions such as those in
immunoglobulin-associated genes (Affer et al. 2014). Other examples of noncoding alterations
include polymorphisms in superenhancer regions of LMO1 in neuroblastomas and TAL1 non-
coding mutations (Mansour et al. 2014, Oldridge et al. 2015). While these examples demonstrate
that noncoding variations can function as drivers of cancer progression, the identification and
validation of noncoding alterations have been relatively rare in cancer to date.

Prior consortia-based efforts, such as the Encyclopedia of DNAElements (ENCODE) Project
Consortium, have integrated a variety of assays including chromatin accessibility, DNA methyla-
tion, chromatin looping, and histone modifications in an effort to discover human regulatory el-
ements (ENCODE Proj. Consort. et al. 2020). These large-scale data can be utilized to annotate
regulatory elements by their function (Boix et al. 2021) or their association to target genes (Nasser
et al. 2021) to help identify the genetic basis of human diseases, including loci associated with can-
cer susceptibility (Sud et al. 2017). In addition, chromatin accessibility data from TCGA has been
useful in identifying noncoding variation in human tumors (Corces et al. 2018). However, these
studies have largely been performed using bulk assays; hence, the dynamics of cell type–specific
interactions between regulatory elements and their target genes during cell differentiation, dam-
age, etc. are not well understood. Single-cell tools, including computational methodologies, are
now revolutionizing our capability to identify noncoding regulatory elements within emergent
rare cell types or transient cell states.

Computational pairing of scATAC-seq and scRNA-seq methods is broadly employed and has
been demonstrated across diverse contexts (Buenrostro et al. 2015, Granja et al. 2021, Satija et al.
2015). These developments have motivated machine learning–based methods to predict GRNs
from single-cell data (Kamimoto et al. 2020).Deep learning methods promise to extend the power
of these single-cell tools, enabling the analysis of nuanced interactions between TFs and chro-
matin (Avsec et al. 2021). Despite the apparent success of these approaches, major challenges still
limit the ability of epigenomic profiling to infer clear and concise gene regulatory interaction
maps. Bulk and single-cell methods for functionally annotating regulatory elements rely on prior
knowledge of gene regulatory mechanisms, are largely correlative, and rely on markers of activity
such as chromatin accessibility,DNAmethylation, and histone modification data. Approaches uti-
lizing high-throughput perturbations with single-cell analysis have already significantly improved
our understanding of noncoding gene regulatory elements and their impact on gene expression.
To this end, reports have suggested that only a small fraction (10–15%) of accessible noncoding re-
gions are indeed functional (Gasperini et al. 2019). By leveraging single-cell data, high-throughput
functional studies will significantly improve predictive models of gene regulation. The impact of
these tools as they improve in accuracy will be broad and will enable new insights into cancer
susceptibility and noncoding drivers of tumor progression.
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5. DNA METHYLATION AND HISTONE MODIFICATIONS REGULATE
CANCER PROGRESSION

Cancer evolution unfolds in part through a series of genetic and nongenetic alterations. How-
ever, connections between genetic mutations and emergent downstream phenotypic landmarks in
cancer evolution, as well as their roles in associated intratumoral heterogeneity, have been less ob-
vious than expected (Schwenger & Steidl 2021). Reproducible, sequential acquisition of hallmark
genomic events, such as in the Vogelstein model of colon cancer progression, does not fully ex-
plain the complexities of genomic and epigenomic variation across cancer evolution (Bailey et al.
2021,Fearon&Vogelstein 1990,Reiter et al. 2019). In addition, descriptions of cancer progression
solely through the lens of increasing genomic variation ignore the importance of GRN-associated
events implicated in cancer progression, such as altered DNA methylation patterns and dys-
regulation of chromatin-modifying enzymes with corresponding histone modifications (Timp &
Feinberg 2013). Furthermore, associations between aneuploidy and enhancer activity are corre-
lated across cancers, adding to the intermingled genomic and epigenomic phenomena in cancer
(Chen et al. 2018). In this section we explore the need to study the intersection of genetic and
nongenetic mechanisms, with a focus on DNAmethylation, in cancer evolution and describe new
strategies to disentangle ambiguities in the field.

Varied methylation patterns across regulatory elements have been attributed as a nongenetic
driver of cancer (Black & McGranahan 2021). However, the function of DNA methylation in
cancer progression more broadly, and at precise regulatory elements specifically, has not been
well resolved. Additionally, the mechanistic connection between DNA methylation and histone
modifications associated with open, poised, or closed chromatin at various regulatory elements
has been challenging to dissect using bulk methodologies (Figure 4a). Tightly coordinated
DNA methylation patterns maintain cell type–specific and context-specific GRNs and preserve
the imprinting and silencing of repetitive elements across the genome (Ishak & De Carvalho
2020). In hematologic malignancies, mutations in chromatin-modifying enzymes associated with

a
Promoter

Insulator

Histone modifications
DNA methylation
TFs
Chromatin regulators

Enhancer Promoter

Super-
enhancer Promoter

DORC
Noncoding mutations

scATAC-seq
scRNA-seq

b

AAAAAA
TTTTTT

scDNAmescCUT&Tag

Enhancer

Figure 4

Regulatory elements are disrupted by diverse mechanisms across cancer progression. (a) Aberrant gene regulation at enhancers (purple),
promoters (teal), and insulators (orange) contributes to cancer evolution. DNA methylation (green) and histone modifications (red) are
placed and bound by chromatin regulators (yellow) and TFs (blue). Noncoding mutations or nongenetic epigenomic mechanisms have
been shown to perturb gene regulation in cancer. Importantly, superenhancers and DORCs have increased regulatory connections and
have been associated with the maintenance of cellular identity. (b) Various approaches to mechanistically dissect altered gene regulation
can now be performed at single-cell resolution. Abbreviations: ATAC-seq, sequencing assay for transposase-accessible chromatin;
CUT&Tag, cleavage under targets and tagmentation; DNAme, DNA methylation; DORC, domain of regulatory chromatin; RNA-seq,
RNA sequencing; sc, single-cell; TFs, transcription factors.
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methylation lead to wide-ranging disruption of methylation landscapes (Glass et al. 2017).While
overt reorganization of methylation patterning is a feature of these cancers, and while therapeutic
agents specifically targeting aberrant methylation are used clinically with varied success, the
exact mechanisms by which methylation disrupts GRNs are still elusive. Furthermore, in cancer
a majority of aberrant methylation occurs in repetitive regions of the genome, namely in Alu
and LINE-1 elements, suggesting that derepression of silenced elements might co-opt GRNs
(Cajuso et al. 2019, Ewing et al. 2020, Gu et al. 2021). The demonstration that extrachromosomal
DNA can function as a mobile enhancer has added to the increased potential of context-specific
epigenomic dysregulation at regulatory elements in cancer (Zhu et al. 2021).

While much work remains to be done to decipher these mechanisms, some headway has
been made in interrogating differentially methylated regions. For example, altered methylation
at CTCF binding sites in gastrointestinal stromal tumors and in IDH-mutant gliomas leads to
hyperactivation of FGF4/FGF5 and PDGFA, respectively (Flavahan et al. 2016, 2019). Further-
more, in glioblastomas, methylation heterogeneity corresponds with tumor subtype classification
(Klughammer et al. 2018). Interestingly, the DNA hypo/hypermethylation loci and histone modi-
fication patterns are structured into compartments in normal nuclei,with heterochromatin around
the periphery, yet this compartmental structure collapses in tumor nuclei ( Johnstone et al. 2020).
Elucidating the mechanisms by which altered methylation and histone modification landscapes
cooperate with rewired TF-mediated GRNs in cancer will require the use of additional multi-
modal single-cell approaches.

The expanding repertoire of single-cell methods beyond scATAC-seq and scRNA-seq to
include single-cell DNA methylation (scDNAme), single-cell ChIP-seq (chromatin immuno-
precipitation and sequencing), and scCUT&Tag studies will facilitate research into how DNA
methylation and histone modifications, together and separately, contribute to disruption of
GRNs (Figure 4b). Many variations of scDNAme technologies have been effectively applied to
various normal and cancer types to both confirm known DNA methylation heterogeneity and
discover novel single-cell variation (Karemaker & Vermeulen 2018). Additionally, integrated
multiomic analyses that pair DNA methylation with TF and histone modification landscapes,
gene expression data, and chromatin accessibility assays have more power to distill the relation-
ships within this multifaceted regulatory landscape (Angermueller et al. 2016, Cheow et al. 2016,
Clark et al. 2018, Guo et al. 2017, Hou et al. 2016, Hu et al. 2019, Pott 2017), and expanding
these multiomic approaches to include scDNAme will be useful to determine the kinetics of
DNA methylation, which has been challenging to decipher previously. Further studies using
single-cell DNA topology profiling methods such as in situ genome sequencing and single-cell
Hi-C, coupled with insights from scDNAme, will produce further insights into how aberrant
methylation in cancer modifies genomic topology and contributes to oncogenic phenotypes
(Gravina et al. 2016, Payne et al. 2021, Ramani et al. 2020). Additionally, the development of
dCas9 (dead CRISPR-associated protein 9) systems that can be designed to target the epigenome,
such as a dCas9-TET fusion system (Liu et al. 2016), will be useful for iterative validation studies.
Together, the pairing of multimodal strategies with functional validation will provide insights into
the varied epigenomic mechanisms that initiate cancer-associated chromatin states and cooperate
with genetic variation to promote cancer.

6. EPIGENOMIC PLASTICITY AND CANCER THERAPEUTICS

The study of cancer evolution requires an understanding of not only how cell states evolve nat-
urally but also how these populations respond to selective pressures, including in response to
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cancer therapy. In the past, the field predominantly viewed drug resistance through the lens of
emergent genetic mutations leading to overt selection and permanence of resistant cell popula-
tions (Hendricks et al. 2017).However, while genetic mutations in response to cancer therapeutics
constitute one important mechanism of drug resistance, the acquisition of aberrant cell states that
do not harbor obvious genetic variation is another mechanism by which this resistance can occur
(Schwenger & Steidl 2021). With more sophisticated approaches to trace cellular responses to
cancer therapeutics, there are immense opportunities to study mechanisms of epigenomic plastic-
ity, both in a treatment-naive setting and posttreatment, and to assess whether these resultant cell
states are irreversible or reversible. Furthermore, there are still unresolved questions regarding
whether treatment-resistant cells exist in the tumor pool prior to therapy or whether they arise
in response to treatment. In this section we highlight some recent studies investigating drug re-
sistance within perceived clonal populations, along with strategies that leverage single-cell epige-
nomics to investigate drug resistance.

Mechanisms of drug resistance in response to cancer therapeutics are likely multifaceted, and
it remains unclear if resistant cells arise from cellular adaptation or selection for a rare preexisting
cell population. Intriguingly, chromatin state variations in rare cancer cell populations, which
lead to persistently high expression of several genes driving unique phenotypes, have been shown
to arise stochastically in cell populations perceived to be homogeneous (Sharma et al. 2010).
In addition, cell populations sorted by specific phenotypic markers can reachieve a phenotypic
equilibrium by interconverting between different cell states, suggesting that there is substantial
epigenomic plasticity in cancer cells (Gupta et al. 2011). To identify these rare populations
that may exist in a preexisting pool of cancer cells, researchers have developed new strategies
such as Rewind to decipher cell states that arise posttreatment (Emert et al. 2021, Shaffer
et al. 2017). Rewind allows for the retrospective identification of cell states that give rise to
drug-resistant populations by coupling lentiviral barcoding with the synthesis of barcodes from
resistant populations to label untreated cells via RNA FISH (fluorescence in situ hybridization).
Using this strategy in BRAFV600E melanoma, researchers identified rare cell populations in the
untreated context that evaded cell killing by the BRAF inhibitor vemurafenib due in part to
sustained activation of the MAPK signaling pathway. Furthermore, scRNA-seq has identified
gene programs in preexisting cell states that led to distinct cell fates following drug treatment
(Emert et al. 2021). Further study of specific gene programs that are activated in these preexisting
populations is important. For example, in glioblastoma, kinase inhibitor treatment leads to a rare
population of slow-cycling cells that upregulate developmental programs, raising the possibility
that resistant cells enter a more dedifferentiated cell state (Liau et al. 2017).

Single-cell tools are advancing our capacity to measure diverse perturbations across cancer
cells, including the interrogation of chromatin- or transcription-targeting drugs. New meth-
ods such as sci-Plex use single-cell sequencing of transcriptional responses to perform high-
throughput drug screening (Srivatsan et al. 2020). Advances in single-cell lineage tracing and in
temporally resolved gene expression and chromatin analyses (Cao et al. 2020, Emert et al. 2021,
Qiu et al. 2020) will provide additional clarity to selection in response to cancer therapeutics.
Additionally, developments in dCas9-based epigenome editing systems will provide mechanis-
tic insights into the heritability of gene expression states that are relevant to drug resistance in
tumors. For example, CRISPRoff/CRISPRon strategies allow for the deposition of DNA and
histone methylation at targeted genomic loci, resulting in gene expression alterations that are
inherited over multiple cell divisions (Nuñez et al. 2021). These strategies will enable greater un-
derstanding of chromatin-mediated drug resistance and strategies to interfere with epigenomic
programs that poise cells for therapeutic selection.
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7. THE ROLE OF THE TUMOR MICROENVIRONMENT
IN GENE REGULATION

While single-cell epigenomics has begun to resolve the heterogeneous cell states that exist across
cancer types, the understanding of how these cell states arise and persist in relation to their local
tumor microenvironment is not well established. Cancer cells intermingle with diverse immune
and stromal cell types, as well as with normal or untransformed cells, in a continuously changing
environment in response to aberrant cues from altered proliferation, hypoxia, and signaling path-
ways ( Jerby-Arnon et al. 2018, Sun & Yu 2015). Single-cell profiling studies aim to characterize
these cell states; however, the etiology of these states can be challenging to decipher in the absence
of spatial information. Spatial context also provides hints related to clonality, both epigenomic and
genomic, and allows for the exploration of cell-cell contacts in the unique local neighborhood of
individual cancer cells. In this section we describe some current insights of intratumoral hetero-
geneity positioned within the tumor microenvironment and discuss new single-cell approaches to
explore chromatin biology spatially.

Cancer cells exist in a diverse ecosystem and are sustained by cell-cell interactions in the
tumor microenvironment. Several examples of codependencies among cancer and noncancer cells
have been identified that contribute to cancer cell persistence. For example, in pancreatic ductal
adenocarcinoma, single-cell transcriptomics paired with protein analyses identified that stromal
cancer-associated fibroblasts alter gene expression programs within cancer cells to promote EMT
and proliferation (Ligorio et al. 2019). Other examples of these interdependencies include the
development of self-supporting niches in squamous tumors to promote macrophage differenti-
ation (Taniguchi et al. 2020), environmental cues from myofibroblasts in colon cancer to alter
stemness (Essex et al. 2019), the exclusion of T cells in melanomas to reduce immune surveillance
( Jerby-Arnon et al. 2018), and codependencies of neuroendocrine and non-neuroendocrine
cell fates in small-cell lung cancer to provide extracellular matrix organization and trophic
support (Lim et al. 2017). Disruption of additional tissue homeostatic factors, such as biophysical
forces, can also promote the activation of oncogenic gene programs leading to an altered tumor
microenvironment and metastasis (Fiore et al. 2020, Kaur et al. 2019). How the epigenome in
cancer cells promotes gene programs that facilitate the interactions with neighboring cells and
how neighboring noncancer cells alter the epigenome of cancer cells are still poorly understood
and growing areas of interest.

In cancer biology, spatial context is classically inferred by traditional immunohistochemical or
fluorescent staining to study the localization of gene expression changes across a tumor. In con-
trast, single-cell spatial transcriptomics is an unbiased method to identify gene expression across
a tumor (Smith & Hodges 2019). For example, the integration of scRNA-seq with array-based
spatial transcriptomics in pancreatic tumors delineates a spatially restricted cancer stress response
that localizes to inflammatory fibroblasts (Moncada et al. 2020). Rapid advances in spatial tran-
scriptomics technology, such as with Slide-seq, have made it possible to study spatial gene ex-
pression at even higher cellular resolution and are ready to be broadly applied in the context of
cancer (Rodriques et al. 2019). While spatial transcriptomics is powerful at identifying gene ex-
pression patterns, advances in spatial epigenomics are required to understand how chromatin reg-
ulation integrates microenvironment stimuli into these gene expression outputs. Spatially resolved
chromatin profiling methods, such as sciMAP-ATAC, in situ genome sequencing, and MERFISH
(multiplexed error-robust FISH), can provide deeper insights into chromatin changes that under-
lie heterogeneous gene expression states (Payne et al. 2021, Su et al. 2020, Thornton et al. 2021).
Additionally, in situ chromatin protein assays such as CODEX enable the multiplexed labeling of
histones andTFs in tumor nuclei (Goltsev et al. 2018). Studying the spatial distribution of different
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epigenetic cell states will further refine our understanding of the interplay between the microen-
vironment and cancer evolution, and will inform drug targets for microenvironment-dependent
interventions.

8. CONCLUSIONS

In this review, we have described key biological processes underlying tumor evolution and high-
lighted relevant opportunities for scientific advances using single-cell epigenomic tools. The ex-
amples provided are broad, ranging from identifying the cell of origin to understanding the gene
regulatory mechanisms underlying metastatic transitions. Most importantly and most excitingly,
single-cell epigenomic tools are rapidly evolving, and now are expanding beyond simple mea-
sures of chromatin accessibility or DNA methylation. Given the already apparent utility of these
mature scATAC-seq technologies, we anticipate that the evolving repertoire of single-cell epige-
nomic tools—integrating histone modifications, genome structures, spatial information, lineages,
etc. (Table 1)—will dramatically advance our understanding of the cellular diversity within tu-
mors and the gene regulatory mechanisms underlying tumor evolution. These technologies are
enabled by the synergistic advances in experimental and computational strategies developed in
academic and industry labs.

Since tumors are highly heterogeneous in cell type composition, we envision that single-cell
analysis of the epigenome will become the standard for cancer cell biology. As such, these tech-
nologies will enable large-scale consortium efforts to, for example, understand regulatory diversity
within human tumors (Corces et al. 2018), as well as help individual labs to synthesize single-cell
and lineage-resolved regulatory maps of tumor evolution. Overall, we contend that the dissection
of regulatory programs using single-cell epigenomic technologies will enable new opportunities
for scientific discovery and will greatly improve our understanding of cancer evolution with im-
plications for improved therapeutic interventions in cancer.
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